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Introduction

The ChannelMaster has been written by Doug Wigley, W5WC, and Warren Pratt, NROV, as an
architecture and a body of code serving as the data-path and command-and-control network layer for
radios utilizing the new openHPSDR ethernet protocol.

Per the definition of the new ethernet protocol, all inbound data is received from the radio in ethernet
packets addressed to specific ports and all outbound data is sent to the radio in ethernet packets
addressed to specific ports. The port numbers reveal the type of data contained in the various packets.
The ChannelMaster provides a framework to decode and process inbound packets and to form and send
the outbound packets. In doing so, the ChannelMaster utilizes other software components, for
example, WDSP processing channels. The ChannelMaster is a complete, functional, body of code for this
purpose as implemented in Thetis. It can also be viewed as an "architecture" in that some of the
functional units, for example the VAC interface or WAV player, might be different in other radio
consoles. However, the same structure can still be used just by modifying the code to instantiate and
execute the alternative functional units.

The ChannelMaster instantiates and executes various functional blocks -- for example, the DSP channels
and VAC interfaces. However, the console software still communicates directly with these blocks for
control purposes, with no intervention of the ChannelMaster. For example, the console might request 7
"receivers". The ChannelMaster will instantiate those and make sure the appropriate data is routed to
them for execution. However, the console communicates directly with these "receivers" to set modes
of operation, filters, WAV recording options, VAC parameters, etc.

The ChannelMaster unpacks Command-and-Control packets from the radio hardware and makes the
information available to the console. It also accepts settings from the console, packs it appropriately
into Command-and-Control packets, and gets those on their way to the radio hardware.

This architecture is relatively new and the authors can already see ways to improve it and make its
operations and interactions with the console more uniform. While no major structural changes are
anticipated, the code is likely to evolve over time, as development time permits.
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Data Flow

Following The Data Through The Code

Packets of data from the radio arrive to the ChannelMaster in the function ReadThreadMainLoop() in
network.c. ReadUDPFrame(), also in network.c, provides additional processing for some types of
packets. ReadThreadMainLoop() converts integer DDC I-Q samples and MIC samples to doubles and
sends the data on its way using appropriate calls.

DDC Samples

For DDC samples, xrouter() in the file router.c is called with a pointer to the samples and their source
port number for identification. The router's purpose is to get the data from each DDC to the right place
under the right conditions. For example, data from a particular DDC may go to be processed by a
Receiver (see section on "Receiver Data Flow") during receive but may be directed to the Transmitter for
PureSignal calibration during transmit. Likewise, for example, if diversity reception is enabled, data from
multiple DDCs would be routed to the diversity mixer; however, if it is not enabled, it would go other
places. Based upon a router-table and the state of several variables, the router makes real-time
decisions on where to send the data and gets it on its way. A packet of DDC data is one of two types:

(1) data from a single DDC, or (2) interleaved data from multiple DDCs.

If the packet is of the first type, the router makes a call to Inbound() in cmbuffs.c, with a pointer to the
samples and an identifier indicating to which software receiver the samples are to go. Inbound() puts
the data in a buffer and, when sufficient data is available for processing by the software receiver,
cm_main() [cmbuffs.c] pulls the data from the buffer using cmdata() [cmbuffs.c] and then calls
xcmaster() [cmaster.c] with the identifier of the particular receiver.

If the packet is of the second type, the router de-interleaves the data and separates the multiple DDC
streams into separate arrays. It then calls InboundBlock() [sync.c] with an appropriate identifier and an
array of pointers to the DDC data arrays. Depending upon the identifier, InboundBlock() will either:

e make a call to the diversity mixer xdivEXT() in WDSP and follow that with a called to Inbound()
[cmbuffs.c] to pass along the mixed data to be buffered, as described above, and then passed to
xcmaster() [cmaster.c],

e make a call to pscc() in WDSP to pass the data to PureSignal for calibration purposes,

e make two calls to Inbound() [cmbuffs.c] to pass data from two DDCs bound for two software
receivers, or

e make a single call to Inbound() [cmbuffs.c] to pass one of the sets of data bound for a software
receiver while discarding any other data sets.

For more information on the router, see the section on "The Router".

For discussion of receiver data processing in xcmaster(), see the section on "Receiver Data Flow".
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MIC Samples

For MIC samples, Inbound() in cmbuffs.c is called with a pointer to the samples and an identifier
indicating this is MIC data bound for the transmitter. Inbound() puts the data in a buffer and, when
sufficient data is available for processing by the software transmitter, cm_main() [cmbuffs.c] pulls the
data from the buffer using cmdata() [cmbuffs.c] and then calls xcmaster() [cmaster.c] with the identifier
of the transmitter.

For discussion of transmitter data processing in xcmaster(), see the section on "Transmitter Data Flow".

Audio Output (To Radio)

As shown in the section "Summary of Outbound Data (To Radio)," audio samples from the output of the
global asynchronous audio mixer need to make their way back to the radio. When the mixer has
prepared a sufficient number of audio samples, mix_main() [aamix.c] calls OutBound() [obbuffs.c] with a
pointer to the samples and an identifier to indicate they are audio. OutBound() stores the samplesin a
buffer. When there are enough samples to fill a packet, ob_main() [obbuffs.c] retrieves samples using
obdata() [obbuffs.c] and calls sendOutbound() [network.c]. SendOutbound() rounds and converts the
samples to integers and calls WriteUDPFrame() [network.c] with a pointer to the samples and the 'audio’
identifier. SendPacket() [network.c] then gets them on their way to the 'audio’ port.

TX I-Q Output (To Radio)

As shown in the section "Summary of Outbound Data (To Radio)," TX I-Q samples come from the
interleaver. xilv() [ilv.c] calls OutBound() [obbuffs.c] with a pointer to the samples and an identifier to
indicate that they are TX I-Q. OutBound() stores the samples in a buffer. When there are enough
samples to fill a packet, ob_main() [obbuffs.c] retrieves samples using obdata() [obbuffs.c] and calls
sendOutbound() [network.c]. SendOutbound() rounds and converts the samples to integers and calls
WriteUDPFrame() [network.c] with a pointer to the samples and the 'TX I-Q' identifier. SendPacket()
[network.c] then gets them on their way to the 'TX I-Q' port.

Wideband Display Data Flow

Wideband data is processed and sent to the appropriate display unit(s) in ReadUDPFrame() in the file
"network.c". Samples are converted from integers to doubles and there is a simple state machine that
manages sending the data to the appropriate display unit. The state machine looks for the beginning of
a complete frame of data, starts from there, sending subsequent packets to complete the frame. If a
sequence error is encountered, the frame is padded to the end with zeros and the state machine waits
for the next frame to start.
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Receiver Data Flow

The orchestration of the data processing for receivers and transmitters is found in the files "cmaster.c"
and "pipe.c". Itis here that the various functional blocks shown in the RX1 RECEIVER, RX2 RECEIVER and
TRANSMITTER block diagrams that follow are instantiated, called for execution, and destroyed when
they are no longer needed. The console resources (specifically types of supported displays) are slightly
different in Thetis for RX1 and RX2; this explains why two separate diagrams are provided.

With regard to the two files "cmaster.c" and "pipe.c", the standard functional blocks that will always be
used and are expected to be the same in all radio consoles have been managed in "cmaster.c". In
contrast, functional blocks that are more likely to be replaced with alternates in various radio consoles
have been broken out and managed in "pipe.c".

Note there is no constraint to have only one "RX1 Receiver" or only one "RX2 Receiver." The
ChannelMaster can instantiate and execute as many of either type as desired. The initial Thetis console,
however, only has controls for one of each. Also, to be clear, when one of these RXn Receivers is
requested/instantiated, EACH of the blocks shown in the diagrams below is created for it.

Comments on the various functional blocks follow.

WAV Player: One per RXn Receiver. Instantiated/owned by the receiver. WAV Player code was written
originally in C# and has not been translated to C. Therefore, calls to instantiate and execute WAV
Players are made to methods in C#.

WAV Recorder: One per RXn Receiver. Instantiated/owned by the receiver. WAV Recorder code was
written originally in C# and has not been translated to C. Therefore, calls to instantiate and execute
WAV Recorders are made to methods in C#.

Phase2 Display: One per RX1 Receiver (not used in the RX2 Receiver-type). Instantiated/owned by the
receiver. Phase2 Display code was written originally in C# and has not been translated to C. Therefore,
calls to instantiate and execute Phase2 Displays are made to methods in C#.

VAC Interface: One interface for inbound data and one interface for outbound data per RXn Receiver.
Instantiated/owned by the receiver. The VAC interface is written in C and is found in the files "ivac.c"
and "ivac.h".

NB & NB2 Noise Blankers: One of each for each RXn Receiver. Instantiated/owned by the receiver. The
code for these blankers is part of the wdsp.dll. However, control interfaces to that code are found in

files "znob.c", "znob.h", "znobll.c", and "znobll.h".

Panadapter: One for each RXn Receiver. Instantiated/owned by the receiver. Per-pixel dB amplitude
values are separately computed for a panadapter display and for a waterfall display. Graphics code to
draw the displays is part of the console.

RXA DSP Channel: See the "WDSP Guide" for information on all the functions that comprise an RXA
Channel Unit. Note that there are N of these instantiated/owned by the RXn Receiver, i.e., there is one
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per sub-receiver. In WDSP, there is no distinction between a "main-receiver" and a "sub-receiver".
Therefore, in the case of Thetis, for example, N = 2 for the RX1 Receiver. Audio outputs of these RXA
channels are combined for further proecssing.

Scope Display: One per RX1 Receiver (not used in the RX2 Receiver-type). Instantiated/owned by the
receiver. Scope Display code was written originally in C# and has not been translated to C. Therefore,
calls to instantiate and execute the Scope Display are made to methods in CH.

RX1 RECEIVER
RXA Receiver + Extra-Channel Functions

-Q Inputl

NB & NB2
Noise
Blankers

WAV Player
(I-Q)

WAV Panadapter
Recorder
(I-Q)
Asynchronous
Audio Mixer
(Global; 1 per

Phase2 . ChannelMaster)
Display (I-Q)

(

AC (I-
L .
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-Q Inputl

WAV Player
(I-Q)

WAV
Recorder
(I-Q)

RX2 RECEIVER

NB & NB2
Noise
Blankers

N Streams
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VAC (Audio)

WAV (Audio)

Asynchronous
Audio Mixer
(Global; 1 per

ChannelMaster)
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Transmitter Data Flow
It is currently assumed that there is only one transmitter. However, this could be changed relatively
easily if needs for more arise.

Functional blocks in the TRANSMITTER diagram that are shown in dark-blue are those that are
instantiated/owned by the transmitter. Those shown in light-blue are instantiated/owned by RXn
Receivers; however, they are accessed by the transmitter code as transmit data is processed. For
example, each receiver has a WAV Recorder. If a receiver's WAV Recorder is recording, then, during
receive it gets data from the appropriate receiver and during transmit it gets data from the transmitter.

VOX: One per transmitter. Owned/instantiated by the transmitter. Detects audio above VOX threshold
and informs the console code. Code is found in files "vox.c" and "vox.h".

TX I-Q Gain: One per transmitter. Owned/instantiated by the transmitter. There are two occasions
where the TX | and Q values must be multiplied by a gain factor: (1) for the Penelope transmitter card,
and (2) for the "ALC" external amplifier protection feature. Code is found in files "txgain.c" and
"txgain.h".

EER: One per transmitter. Owned/instantiated by the transmitter. Separates the transmit I-Q signal
into multiple streams as needed for Envelope Elimination and Restorations and Envelope Tracking
modes of transmission. Signal processing code is part of WDSP; however, a control interface is found
the file "zeer.c".

Interleave: One per transmitter. Owned/instantiated by the transmitter. Used to interleave multiple
data streams into a single interleaved stream. Used with EER. Code is found in the files "ilv.c" and
"ilv.h".
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TRANSMITTER
TXA Transmitter + Extra-Channel Functions

MIC Inl'

Asynchronous
Audio Mixer
(Global; 1 per

ChannelMaster)

Input from
WAV Players
(per Rcvr)

Output to
WAV Record. Output to TX 1-Q Gain

(per Revr) VAC
Interfaces \L

Input from
VAC Output to

Interfaces WAV Record. l,
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Summary of Outbound Data (To Radio)

There are two types of outbound data going back to the radio hardware: Audio samples, and TX I-Q
samples. The following diagram provides a simplified summary of how those are derived. Note that,
along with all RX outputs, the TX output also goes to the Audio Mixer. This is for the transmit Monitor
function.

OUTPUT STREAMS (To Radio)

GLOBAL
ASYNC.
AUDIO
MIXER

=

Inter-

EER/ETR --> [N

* EER/ETR generates TWO streams, when active
* TX streams are interleaved for EER/ETR
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The Router

cmp==k DDC-STREAM ROUTING

openHPSDR

Re ROUTER
TABLES

Diversity
Mixer

ROUTER

* A Router Table is loaded based upon “Radio Model”
* “port” uniquely identifies data stream(s)

* Control variables: MOX, PS_enabled, Div_enabled, ...

Copyright © 2015, 2016 Warren C. Pratt, NROV

Setting Up The Router

The most difficult part of setting up the router is deciding what you want it to do. It is suggested to
prepare a spreadsheet (example below) containing an exhaustive display of all cases. Once this is
prepared, it is a relatively easy mechanical process to, from the spreadsheet, create the set of numbers
that will go into the router table.

There are two ways to control the data-flow through the router (i.e., to control what input goes to what
output(s)): (1) by the router table that is loaded, and (2) by designating and setting router control
variables. It is recommended that a new router table be loaded only when there is a major
configuration change in the radio, for example, when the hardware model is switched from one with
two DDCs to one with four DDCs. "Variables" can be used to control the routing within the
specifications of the table. For example, in Thetis, the routing changes depending upon (1) the state of
MOX, (2) whether Diversity Reception is enabled, and (3) whether PureSignal is enabled. So, in Thetis,
there are three router control variables used: MOX, Diversity, and PureSignal. This means that there
are 2”3 or 8 possible combinations of those variables that must be considered. For any given router

12
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table, we must decide, for each DDC, where its data stream is to go for each of the eight combinations
of the router control variables.

Consider the following example spreadsheet for Thetis:

Model F'"S:C“e Inbound() and InboundBlock() Calls

IMOX &8 IMOX 88 IMOX &8 IMOX &8 MOX 88 MOX &8 MOX &8 MOX &8
'Diversity &8 !Diversity &8 Diversity &% Diversity &8 !Diversity &8 !Diversity &8 Diversity &8 Diversity &8
'PureSignal PureSignal !PureSignal PureSignal !PureSignal PureSignal !PureSignal PureSignal

poco®

BE(D) BE(0} BB(1) IBB(0) BE(1)
(Angeliaj DDC1*
Qrien).  ppe2 B0} B(0} IB{0} B0} B0}
DDC3 B(1) B(1) B(1) IB(1) B(1) B(1) B(1) B(1}
H DDCO* B0} IB(D) B0}
.HE Erme";\_ i Ll BB(0} BB{0} ) B(1),BB(3) BB}  BB(1), BB(3)
ermes-E). ppgyes B(1) B(1) B(1)

I

DOCO and DDC1 are always synchronous, cutput on DDCO, port 1035,

= DOCO and DDCA are synchronous at some times and not at others.

NOTE: An IBB() call implies that the receivers are operating synchronously.

First of all, there are TWO complete router tables displayed here, one for four DDC radios (Angelia and
Orion) and one for two DDC radios (Hermes and Hermes-E). Then, for each of those two router tables,
we must consider what happens to the output of each DDC.

Across the top of the chart, we see the eight combinations of the three control variables. We must
determine the destination of each DDC output for each combination ... hence, the cells of the
spreadsheet.

In some cases (see footnotes on the spreadsheet) DDCO and DDC1 will be operating "synchronously"
and interleaved data is being received from the pair of DDCs. In those cases, two cells of the
spreadsheet have been merged and there is an 'IBB(y)' designation in such a cell. When DDCs are NOT
operating synchronously and data from a DDC is being returned alone in its own packets, there is an
'IB(x)' designation in the corresponding cells. 'IB(x)' and 'IBB(y)' stand for the 'Inbound(x)' and
'InboundBlock(y)' calls that the router is to make. These were discussed above in the section "Following
The Data Through The Code - DDC Samples."

The 'x' values in an 'IB(x)' call specify a ChannelMaster 'stream'/'inid" identifier as discussed in the
section on "Identifiers" under "Instantiatiating the ChannelMaster."

13
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The 'y' values in an 'IBB(y)' call designate the destination for samples sent to InboundBlock(y). There are
currently four possible cases, also discussed above in "Following The Data Through The Code - DDC
Samples." Briefly reiterating:

0 - data goes to diversity mixer

1 - data goes to PureSignal calibration function

2 - data goes to software receivers of rxid=0 and rxid=1

3 - data from DDCO goes to software receiver rxid=0 and data from DDC1 is discarded.
Now, let's work through the table entries for Hermes and Hermes-E, just as examples.

e Inthe first two columns, we're in receive mode (IMOX) and Diversity is not enabled. The two
DDCs are set to operate asynchronously (which implies that they can have different sample
rates) and the data from each is sent to a respective software receiver -- DDCO goes to receiver
rxid=0 and DDC1 goes to receiver rxid=1.

e Inthe third and fourth columns, we're still in receive (IMOX) but now Diversity is enabled. For
Diversity to function, the receivers must be set up to operate synchronously. Hence, we must
use an IBB call with the destination of the diversity mixer -- the call is 'IBB(0)'.

e In the fifth column, we're transmitting (MOX) but neither Diversity nor PureSignal are in use.
The DDC data is sent to the two software receivers, just as in columns one and two.

e Inthe sixth column, we're transmitting with PureSignal enabled and Diversity not enabled. For
PureSignal calibration, the two DDCs must operate synchronously. Hence, we have the call
'IBB(1)', i.e., synchronous operation with the data going to the PureSignal calibration function.
We would also like to see the PureSignal results on the panadapter using the DUP functionality.
Therefore, we make a second call to 'IBB(3)' routing the results to the first software receiver,
rxid=0. Note that the frequency scale on the panadapter must be changed to match the
transmit frequency because both receivers must be on the transmit frequency for PureSignal
calibration. The transmit frequency may or may not be the same as the receive frequency.

e In the seventh column, we're transmitting with Diversity enabled (PureSignal not enabled). The
receivers must be synchronous for Diversity and data goes to the diversity mixer, i.e., 'IBB(0)".

e Inthe eighth column, we're transmitting with both Diversity and PureSignal enabled. The
receivers must be synchronous. For PureSignal, the two DDCs must be on the transmit
frequency; however, for Diversity, the two DDCs would be on the receive frequency which may
be different. Since we're transmitting, we deemed PureSignal more important; however,
because we'd like to monitor PureSignal performance in DUP mode on the panadapter, we'll
route the signals to BOTH the first software receiver and to the PureSignal calibration function
using two calls, 'IBB(1)' and 'IBB(3)'. Note that the frequency scale on the panadapter must be
changed to match the transmit frequency because both receivers must be on the transmit
frequency for PureSignal calibration.

14
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IMPORTANT NOTE: The router table ONLY controls the routing of data. However, other control
functions must correspond to what the router is doing as expressed in the router table. For example, in
some situations the two DDCs must be set to run synchronously and at other times not. This must be
controlled in other code; although, the above spreadsheet clearly shows the required settings! Other
settings which must be controlled are (1) whether DDCs are enabled, (2) the DDC frequencies which may
change depending upon variables like MOX, and (3) the various DDC sample rates.

Having our spreadsheet prepared, it's now time to actually set up the router. To do so, we use the
following call:

void LoadRouterAll (

void* ptr, // pointer to router data structure. We will use the following 'id'
p p 8
// instead; so, set this to 0.

intid, // 'id" of the router. There's only one in the ChannelMaster at this point;
// so, set this to 0.

int ports, // maximum number of network ports on which data will be received

int calls, // maximum number of function calls the router is to make to 'IB' or
// 'IBB' for each port

int varvals, // number of combinations of router control variables; e.g., for 3
// variables, this is 223 =8

int* nstreams, // array containing the maximum number of streams from each port
int* function, // array showing functions to be called: 0=none, 1="IB', 2 ="IBB'
int* callid); // array showing parameter to be passed in each call

Continuing with the Hermes example from above, the parameters would be as shown below. Note that
for "*function ' and '*callid ' the eight columns correspond to the columns of the spreadsheet.

ptr=0;

id=0;

ports = 2; // we use port 1035 for DDCO data and port 1036 for DDC1

calls =2; // in some cases, we must make two 'IBB' calls for a single set of data
varvals = §; // eight combinations of the three router control variables
*nstreams = {2, 1}; // two (interleaved) streams from DDCO and one stream from DDC1

*function={ 1,1,2,2,1,2,2,2, // DDCO, port 1035, First Call (0 = none, 1="IB', 2 ="'IBB')

0,0,00,0,2,0, 2, // DDCO, port 1035, Second Call

15
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1,1,0,0,1,0,0,0, // DDC1, port 1036, First Call
0,0,0,0,0,0,0,0}; // DDC1, port 1036, Second Call [there are none]
*callid = { 0,0,00,0,1,0,1, // DDCO, port 1035, First Call
0,0,00,0,3,0, 3, // DDCO, port 1035, Second Call
1,1,1,1,1,1,1,1, // DDC1, port 1036, First Call (if no call, value doesn't matter)
1,1,1,1,1,1,1, 1} // DDC1, port 1036, Second Call

After the router table is loaded, we still need a call to set the value of the router control variables.
That's done as follows:

void LoadRouterControlBit (void* ptr, int id, int var_number, int bit);

where 'ptr' and 'id' can be set to 0, as in the LoadRouterAll(...) call. 'var_number' specifies which
variable is being set and 'bit' specifies the value of the variable where 0 is 'false' and 1 is 'true'. Relating
to the example spreadsheet, 'var_number' 0 is "PureSignal", 'var_number' 1 is "Diversity", and
'var_number' 2 is "MOX".
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The Asynchronous Audio Mixer

Combining multiple input streams of sampled audio into a single audio stream can be as simple as
adding together the respective samples of the various input streams. However, the new ethernet
protocol provides no guarantees of the arrival times of the raw data (DDC data or MIC samples) that will
be processed to produce the audio input streams. There are not even any guarantees about the order
and order-consistency of various data streams. Additionally, there is variability in the processing times
of various data streams to produce audio because this processing occurs per the operating system
scheduling of individual threads. For these reasons, a mixer is needed that can synchronize the various
input audio streams and then add the respective samples together. The Asynchronous Audio Mixer
[code in aamix.c and aamix.h] does this.

Additionally, all input streams are not necessarily at the same sample rate. This mixer also converts all
incoming streams to the output sample rate before summing them.

The Global Mixer, the one creating the audio stream that is sent back to the radio hardware, is
instantiated during instantiation of the ChannelMaster. Sample rates are automatically set based upon
ChannelMaster settings at instantiation. There are, however, some interactions required from the
console and these are discussed now.

To synchronize the various input audio streams, the mixer waits until it has enough samples of each
input stream to create an output buffer, then it mixes and creates the output buffer. It follows that if
some input stream is NOT providing any input, the mixer will block indefinitely waiting for input. This
could happen, for example, if the mixer is expecting audio from a particular software receiver but the
DDC feeding the receiver has been turned OFF. Therefore, the mixer must be told, of the possible input
streams, which ones are currently active and which are not. Two alternative calls are provided for doing
this.

The first sets the state (active/inactive) of a single stream.

void SetAAudioMixState (void* ptr, int id, int stream, int state);
The second sets the state of multiple streams using a single call.
void SetAAudioMixStates (void* ptr, int id, int streams, int states);

In some cases, even though data for a particular stream is known to be flowing, it is desirable to turn
OFF having it mixed into the output. The mixing state of a particular stream can be set using:

void SetAAudioMixWhat (void* ptr, int id, int stream, int state);

Volume settings are also available -- both an overall output volume and volume settings for individual
streams.

void SetAAudioMixVolume (void* ptr, int id, double volume);

void SetAAudioMixVol (void* ptr, int id, int stream, double vol);
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Instantiating the ChannelMaster
The ChannelMaster is instantiated and default values are set for operation using a sequence of calls.

The first call to be made is SetRadioStructure(...). This call sets basic parameters that will be used to

instantiate sub-units and allocate storage.

For this call, you must select the MAXIMUM number of streams, receivers, transmitters, sub-receivers,

and specials that will ever be used. Not all these need be active in operation; however, resources for

them must be allocated at this point.

void SetRadioStructure (

int nstreams,

int nrevrs,
int nxmtrs,
int nsubrx,

int nspc,

int* spc,

int* MAXInBound,

int MAXInRate,

int MAXAudioRate,

int MAXTxOutRate);

// total number of input data streams, including DDC, MIC, and others
// for special units

// number of software receivers
// number of software transmitters
// number of sub-receivers per software receiver (main+one_sub = 2)

// number of TYPES of non-rx/non-tx special units, for example for a
// "stitched" panadapter display

// array giving number of special units OF EACH TYPE

// array giving max number of samples in a call to Inbound(), per stream
// (determined by number of samples per packet)

// maximum sample rate of any input data stream

// maximum audio output rate of any DSP channel (include receivers
// and transmitter monitor audio)

// maximum transmitter channel output sample rate

Next, we send function/method pointers for certain calls that the ChannelMaster will need to make to

the console code. Itis recommended that these calls be consolidated into one simple function. In the

case of the ChannelMaster as used in Thetis, these function/method pointers comprise:

e Pointer to the VOX function. This is needed as the C# console code must be informed that MOX

is to be 'true' or 'false’.

e Pointers to the Create_Wave_Player and Create_Wave_Recorder functions. These are needed

since the Wave_Player and Wave_Recorder codes are in C# in the Thetis console code. l.e., they

have not been translated to C.

e Pointer to the Create_Scope function. This is needed since the Scope code is in C# in the Thetis

console code. l.e,, it has not been translated to C.

The specific calls are:
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void SendCBPushVox (int xmtr_id, void (__stdcall *pushvox)(int id, int active));
void SendCBCreateWPlay (void (__stdcall *create_WavePlay)(int id));

void SendCBCreateWRecord (void (__stdcall *create_WaveRecord)(int id));
void SendCBCreateScope (void (__stdcall *create_Scope)(int id));

Next, we set the default sample rates. These rates can be changed later; however, in some cases, it may
be desirable just to always leave them at their default values.

void set_cmdefault_rates (

int* xcm_inrates, // sample rates for each of the input data streams, ordered as DDC
_ p p
// streams, MIC stream, Specials streams

int aud_outrate, // ChannelMaster audio output sample rate
int* rcvr_ch_outrates, // output rates of all RXA WDSP channels
int* xmtr_ch_outrates); // output rates of all TXA WDSP channels

At this point, we are ready to make the very important calls that use all the previously entered
information to complete instantiation of the ChannelMaster:

void CreateRadio(); // creates functional blocks
void create_rnet(); // creates network layer

The ChannelMaster is now instantiated and ready for use. Optionally, at this point, we may wish to set a
few parameters that (1) are to be different than default values, and/or (2) will be constants, i.e., their
values will NOT be changed during the operation of the program. Since they are constant, we may as
well do that here and not bother to do it elsewhere. To use some of these calls, you will need
"Identifiers". For example, if you want to set a parameter for the TXA in WDSP, you need to know the
Channel number. "ldentifiers" are covered in the section of the same name, below.

The firmware interpolation filters are designed differently for the new Ethernet protocol and the old
USB protocol. As a result, for Thetis, we need to turn on a special "CFIR" filter in WDSP that is not used
in PowerSDR. It is OFF by default. The call to do so is:

void SetTXACFIRRun (int channel, 1);

There are a few constants we can set for PureSignal. All current radio models are set up to use StreamO
for off-air RX feedback and to use Stream1 for loopback TX feedback. We can specify those streams.
We can also set the PureSignal Feedback rate and set the peak level delivered by the new Ethernet
protocol firmware.

void SetPSRxlIdx (int txid, int stream); // Thetis uses: SetPSRxIdx (0, 0);
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void SetPSTxldx (int txid, int stream); // Thetis uses SetPSTxIdx (O, 1);
void SetPSFeedbackRate (int channel, int rate); // Thetis uses SetPSFeedbackRate (channel, 192000);
void SetPSHWPeak (int channel, double peak); // Current NP Firmware: peak = 0.2899

The transmit panadapter/waterfall generation is handled differently in Thetis compared to PowerSDR;
so, there are a couple things that need to be set differently from WDSP defaults for that also:

void TXASetSipMode (txchannel, 1);

void TXASetSipDisplay (txchannel, txid);

Freeing Resources
When the application is to be closed, ChannelMaster resources should be freed. This is done with the
simple call:

void DestroyRadio();

Identifiers & Related Utilities

There are several identifiers and related values that are needed to address various items. There are also
utilities in the ChannelMaster that, given some information, can return to you the identifier that you
need.

First of all, we need to understand the variable 'stype’, the "stream_type". Several types of data streams
enter the ChannelMaster for processing: DDC (receiver) streams, MIC (transmitter) streams, and data
streams for 'special' units. Each of these types is assigned an 'stype’.

0 - receiver streams
1 - transmitter streams
2 - special stream (more of these could be defined as 3, 4, ... n)

"Streams" are also assigned an identifier, beginning with 0 and going up to the total number of input
streams to the ChannelMaster. This identifier is named 'stream' or also 'inid".

Software Receivers are assigned identifiers, beginning with 0 and going up to the total number of
software receivers. This identifier is named 'rxid'.

Software Transmitters are assigned identifiers, beginning with 0 and going up to the total number of
software transmitters. This identifier is named 'txid'.

Special Units are assigned separate identifiers for each type of special unit. These also begin with 0 and
go up to the total number of units of the type. For the first special type, this identifier is named 'sp0id'.
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As discussed in the "WDSP Guide", each WDSP channel is assigned a channel number. This identifier is
called 'channel' or also 'chid'.

Given these definitions, the following calls can be used to return the identifiers that are needed for any
specific call to WDSP or to the ChannelMaster:

int stype (int stream);

int rxid (int stream);

int txid (int stream);

int sp0id (int stream);

int chid (int stream, int subrx); // TXA has no 'subrx’; set to 0.

int inid (int stype, int id); // 'id" is one of 'rxid', 'txid', 'spOid'

There are other related utility calls that, using these identifiers, can be used to retrieve information
about particular parameters.

int getinputRate (int stype, int id); // returns the sample rate of an input stream
int getChannelOutputRate (int stype, intid); //returns the output rate of a WDSP Channel

int getbuffsize (int rate); // returns a buffer size being used in xcmaster()

Changing Sample Rates
As mentioned in the section on "Instantiating the ChannelMaster," the default sample rates that are
specified when instantiating can be later changed during operation.

To change the input rate that the ChannelMaster is expecting from radio hardware, use the following
call. Note that, since the WAV Player and WAV Recorder are currently in C# code, it is left to the console
to change the expected rates for them separately. The display samplerate is currently also set in the
separately in the console code.

void SetXcmlnrate (int in_id, int rate);

The sample rate of ChannelMaster audio output going back to the radio hardware is changed with the
the following call. Note that this will usually NOT change and will remain at the default rate set at
instantiation.

void SetCMAudioOutrate (int id, int rate);
The output sample rate of a particular software receiver can be set using the following call. However,

this call is not normally used as values normally stay at their defaults. Note that this does not set the
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Scope, WAV Recorder, and WAV Player since that code is currently in C#, i.e., this must be done
separately by the console.

void SetRcvrChannelOutrate (int rxid, int rate, int state);

The Transmitter output sample rate is set using the following call. Note that the transmitter display
sample rate, the Scope rate, and the WAV Recorder rate must be set separately by the console.

void SetXmtrChannelOutrate (int txid, int rate, int state);

Command & Control

Computer to Radio Hardware

The console makes various calls to set parameters in a data structure. When the console changes a
parameter value, this triggers sending a new packet containing the modified value. In [network.c], are
found functions CmdGeneral(), CmdHighPriority(), CmdRx(), and CmdTx(), corresponding to the various
types of computer-to-radio packets.

Radio Hardware to Computer
The High-Priority Status Packet is unpacked in ReadThreadMainLoop() [network.c] and its values are
stored. Calls are provided such that the console can poll the various values contained in this packet.
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